Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Añadir filtros

Base de datos
Tipo del documento
Intervalo de año
1.
Biomaterials ; 273: 120827, 2021 06.
Artículo en Inglés | MEDLINE | ID: covidwho-1184844

RESUMEN

The rapid spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) on a global scale urges prompt and effective countermeasures. Recently, a study has reported that coronavirus disease-19 (COVID-19), the disease caused by SARS-CoV-2 infection, is associated with a decrease in albumin level, an increase in NETosis, blood coagulation, and cytokine level. Here, we present drug-loaded albumin nanoparticles as a therapeutic agent to resolve the clinical outcomes observed in severe SARS-CoV-2 patients. PEGylated nanoparticle albumin-bound (PNAB) was used to promote prolonged bioactivity of steroidal ginsenoside saponins, PNAB-Rg6 and PNAB-Rgx365. Our data indicate that the application of PNAB-steroidal ginsenoside can effectively reduce histone H4 and NETosis-related factors in the plasma, and alleviate SREBP2-mediated systemic inflammation in the PBMCs of SARS-CoV-2 ICU patients. The engineered blood vessel model confirmed that these drugs are effective in suppressing blood clot formation and vascular inflammation. Moreover, the animal model experiment showed that these drugs are effective in promoting the survival rate by alleviating tissue damage and cytokine storm. Altogether, our findings suggest that these PNAB-steroidal ginsenoside drugs have potential applications in the treatment of symptoms associated with severe SARS-CoV-2 patients, such as coagulation and cytokine storm.


Asunto(s)
COVID-19 , Ginsenósidos , Nanopartículas , Albúminas , Animales , Ginsenósidos/farmacología , Humanos , Polietilenglicoles , SARS-CoV-2
2.
Nano Today ; 38: 101149, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: covidwho-1171534

RESUMEN

In response to the coronavirus disease-19 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), global efforts are focused on the development of new therapeutic interventions. For the treatment of COVID-19, selective lung-localizing strategies hold tremendous potential, as SARS-CoV-2 invades the lung via ACE2 receptors and causes severe pneumonia. Similarly, recent reports have shown the association of COVID-19 with decreased 25-hydroxycholesterol (25-HC) and increased cytokine levels. This mechanism, which involves the activation of inflammatory NF-κB- and SREBP2-mediated inflammasome signaling pathways, is believed to play a crucial role in COVID-19 pathogenesis, inducing acute respiratory distress syndrome (ARDS) and sepsis. To resolve those clinical conditions observed in severe SARS-CoV-2 patients, we report 25-HC and didodecyldimethylammonium bromide (DDAB) nanovesicles (25-HC@DDAB) as a COVID-19 drug candidate for the restoration of intracellular cholesterol level and suppression of cytokine storm. Our data demonstrate that 25-HC@DDAB can selectively accumulate the lung tissues and effectively downregulate NF-κB and SREBP2 signaling pathways in COVID-19 patient-derived PBMCs, reducing inflammatory cytokine levels. Altogether, our findings suggest that 25-HC@DDAB is a promising candidate for the treatment of symptoms associated with severe COVID-19 patients, such as decreased cholesterol level and cytokine storm.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA